Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data. A key premise for the remarkable performance of GNNs relies on complete and trustworthy initial graph descriptions (i.e., node features and graph structure), which is often not satisfied since real-world graphs are often incomplete due to various unavoidable factors. In particular, GNNs face greater challenges when both node features and graph structure are incomplete at the same time. The existing methods either focus on feature completion or structure completion. They usually rely on the matching relationship between features and structure, or employ joint learning of node representation and feature (or structure) completion in the hope of achieving mutual benefit. However, recent studies confirm that the mutual interference between features and structure leads to the degradation of GNN performance. When both features and structure are incomplete, the mismatch between features and structure caused by the missing randomness exacerbates the interference between the two, which may trigger incorrect completions that negatively affect node representation. To this end, in this paper we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs, namely T2-GNN. To avoid the interference between features and structure, we separately design feature-level and structure-level teacher models to provide targeted guidance for student model (base GNNs, such as GCN) through distillation. Then we design two personalized methods to obtain well-trained feature and structure teachers. To ensure that the knowledge of the teacher model is comprehensively and effectively distilled to the student model, we further propose a dual distillation mode to enable the student to acquire as much expert knowledge as possible.
translated by 谷歌翻译
基于图形卷积的方法已成功应用于同质图上的表示学习,其中具有相同标签或相似属性的节点往往相互连接。由于这些方法使用的图形卷积网络(GCN)的同义假设,它们不适合异质图,其中具有不同标记或不同属性的节点往往相邻。几种方法试图解决这个异质问题,但是它们没有改变GCN的基本聚合机制,因为它们依靠求和操作员来汇总邻近节点的信息,这隐含地遵守同质假设。在这里,我们介绍了一种新颖的聚合机制,并开发了基于随机步行聚集的图形神经网络(称为RAW-GNN)方法。提出的方法将随机步行策略与图神经网络集成在一起。新方法利用广度优先的随机步行搜索来捕获同质信息和深度优先搜索以收集异性信息。它用基于路径的社区取代了传统社区,并基于经常性神经网络引入了新的基于路径的聚合器。这些设计使RAW-GNN适用于同质图和异质图。广泛的实验结果表明,新方法在各种同质图和异质图上实现了最先进的性能。
translated by 谷歌翻译
由于它们对处理图形结构数据的显着功率,图表卷积网络(GCNS)已广泛应用于各个领域。典型的GCN及其变体在同声源性假设下工作(即,具有相同类的节点容易彼此连接),同时忽略许多真实网络中存在的异源性(即,具有不同类别的节点倾向于形成边缘) 。现有方法通过主要聚集高阶邻域或梳理即时表示来处理异常的方法,这导致结果导致噪声和无关的信息。但这些方法没有改变在同性恋假设下工作的传播机制(这是GCN的基本部分)。这使得难以区分不同类别的节点的表示。为了解决这个问题,在本文中,我们设计了一种新的传播机制,可以根据节点对之间自动或异常改变传播和聚合过程。为了自适应地学习传播过程,我们在节点对之间引入两个奇妙程度的两个测量,这分别基于拓扑和属性信息来学习。然后,我们将学习的同音源于Graph卷积框架纳入图形卷积框架,该框架在端到端的架构中培训,使其能够超越奇妙的假设。更重要的是,我们理论上证明我们的模型可以根据他们的同意程度来限制节点之间的表示的相似性。 7个现实世界数据集的实验表明,这种新方法在异常或低意识下表现出最先进的方法,并在精梳性下获得竞争性能。
translated by 谷歌翻译
图表卷积网络(GCN)显示了探索图形表示的显着潜力。然而,GCN聚合机制无法通过异常概括到网络上的网络,其中大多数节点具有来自不同类别的邻居,该邻居通常存在于现实网络中。为了使GCN的传播和聚合机制适合于粗源性和异常的(甚至它们的混合物),我们将块建模引入GCN的框架,以便它可以实现“块导向的分类聚合”,并自动学习不同类别邻居的相应聚合规则。通过将块建模掺入聚合过程中,GCN能够根据其同音程度判别歧视来自同性恋和异交邻居的信息。我们将我们的算法与最先进的方法进行了比较了异证问题。经验结果证明了我们在异交数据集中现有方法的新方法的优越性,同时在同性恋数据集中保持竞争性能。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译
Capturing feature information effectively is of great importance in vision tasks. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains on diverse deep learning vision tasks. However, the existing methods do not organically combined advantages of these valid ideas. In this paper, we propose a novel CNN architecture called GoogLe2Net, it consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI) which create transverse passages between adjacent groups of convolutional layers to enable features flow to latter processing branches and possess residual connections to better process information. Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level, which improves performances in image classification. And the inception we proposed could be embedded into inception-like networks directly without any migration costs. Moreover, in experiments based on popular vision datasets, such as CIFAR10 (97.94%), CIFAR100 (85.91%) and Tiny Imagenet (70.54%), we obtain better results on image classification task compared with other modern models.
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译